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Assessing Dimensionality of a Set of ItemsComparison of Different Approaches

Abstract

This study examines the performance of the following four methodologies for

assessing unidimensionality: Stout's procedure, Holland and Rosenbaum's approach, linear

factor analysis, and nonlinear factor analysis. Each method is examined and compared with

other methods on simulated test data and real test data. Seven data sets were simulated:

three unidimensional test data, and four twodimensional test data, all with 2000

examinees. Two levels of correlation between abilities were considered (p=.3 and p= .7).

Eight different real test data were used: four of them are known uridimensional test data,

and the other four were twodimensional test data created from unidimensional tests.

Findings suggest that, while the linear factor analysis overestimated the number of

underlying dimensions, the other three methods correctly confirmed unidimensionality but

differed in their ability to detect lack of unidimensionality. Stout's procedure showed

excellent power in detecting lack of unidimensionality; Holland and Rosenbaum's and

nonlinear factor analysis approaches showed good power provided the correlation between

abilities is low.
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It is well known that most item response theory models require the assumption of

unidimensivAality. According to Lord and Novick (1968), dimensionality is defined as the
total number of abilities required to satisfy the assumption of local independence. If there

is only one ability affecting the responses of a set of items to meet the assumption of local

independence then that set is referred to as a unidimensional set. It is also been long argued
that test items are multiply determined (Humphreys, 1981, 1985, 1986; Hambleton &

Swaminathan, 1985; Reckase, 1979, 1985; Stout, 1987; Traub, 1983; Yen, 1985) and several

abilities unique to items or common to relatively few items are inevitable. The ability

which the test is intended to measure (i.e., the ability common to all items) will be referred
to as the dominant ability and abilities unique to or influening few items will be referred

to as minor abilities. Given that tests are multiply determined, it is intuitively clear that
in order to satisfy the assumption of unidimensionality it is required that a given test

measures a single dominant ability. A number of simulation studies have demonstrated
that dominant ability can be recovered well, using computer programs such as LOGIST, in
tests with one dominant factor in the presence of several minor factors (Reckase, 1979;

Drasgow & Parsons, 1983; Harrison, 1986). Although counting only dominant dimensions
violates Lord and Novick's (1968) definition of dimensionality, it is commonly accepted
that in order to apply unidimensional item response theory models it is sufficient to show
that there is one dominant ability underlying the responses to a set of items.

Stout (1987, 1990) provided a mathematically rigorous definition of dominant
dimensionality referred to as etsential dimensionality, and provided a statistical test to
assess essential unidimensionality of a set of items. Essential dimensionality is the total
number of abilities required to satisfy the assumption of essential independence. Essential
independence and essential dimensionality are the weaker forms of local independence and

traditional dimensionality (Lord & Novick, 1968), respectively. Stout's definition jf
essential dimensionality uses an infinite item pool item response theory framework wherein

the item pool is conceptualized as the consequence of continuing the test construction
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process in the same manner beyond the construction of the F. items of the finite test being

studied. Hence essential dimensionality is defined for the item pool.

In assessing essential unidimensionality using Stout's procedure, one is assessing the

likelihood that the given set of items comes from an essentially unidimensional item pool.

The major focus in assessing essential unidimensionality of a given set of item responses is

to determine how !Rau the influence of minor abilities is and whether the influence of the

minor abilities can be ignored in assessing essential unidimensionality.

Historically speaking, linear factor analysis has been used to assess the

dimensionality of the latent space underlying a set of items. If the results indicate a

onefactor solution then it can be inferred that one dominatit ability is influencing item

responses. There are, however, a number of technical as well as methodological problems

associated with using linear factor analyses to assess dimensionality. For example,

difficulty level of items and guessing level of multiple choice items can each play a major

role in altering the factor structure of item responses resulting in an overestimation of the

number of underlying factors (for details see Carroll, 1945, Hu lin, Drasgow, & Parsons,

1983, Zwick, 1987). Consequently, many attempts have been made by researchers in recent

years to develop new methods to assIss dimensionality. Some of the recently developed

methods include nonlinear factor analysis (McDonald & Ahlawat, 1974); Bejar's procedure

(Pejar, 1980); order analysis (Wise, 1981); modified parallel analysis (Hu lin, Drasgow,

Parsons, 1983); residual analysis (Hambleton & Swaminathan, 1985); Bock's full

information factor analysis (Bock, Gibbons, & Murake, 1985); Holland and Rosenbaum's

test of unidimensionality, monotonicity, and conditional independence (Rosenbaum, 1984;

Holland & Itosenbaum, 1986); Humphreys and Tucker's procedures (Tucker, Humphreys,

& Roznowski, 1986); and Stout's unidimensionality procedure (Stout, 1987).

Hattie (1985), Hambleton and Rovinelli (1986), and Berger and Knol (1990) have

reviewed several procedures for assessing dimensionality including some of the above

mentioned procedures. Their conclusions were that none of the procedures were
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satisfactory. The main focus of this paper is to study and compare some of the procedures

to assess dimensionality that are most recent, seem promising, and are little studied. Four

procedures are considered and compared in this paper: Nonlinear factor analysis, Ho 111.nd

and Rosenbaum's procedure, Stout's procedure, and linear factor analysis. Linear factor

analysis is used, because of its historical importance, as a benchmark to compare other

procedures. Several unidimensional and multidimensional test data are simulated and used

to study the performance of all four procedures fer assessing dimensionality. The same

procedures are then repeated with real test data.

Description of Procedures

Linear Factor Analysis

Linear factor analysis is the most commonly used approach to assess dimensionality,

With linear factor analysis, each extracted factor is presumed to represent a dimension or

trait and the items that load heavily on a given factor are considered good measures of that

dimension. There are a number of fundamental problems associated with applying linear

factor analysis to binary data. First, the linear factor analysis assumes that the relationship

between the observed variables and the underlying factors is linear and that the variables

are continuous in nature. But it can be shown that the relationship between the

performance and the underlying latent variable is nonlinear. Hence applying factor analysis

to binary responses amounts to approximating the nonlinear relationship to a linear one.

As a result, difficulty factors are produced if guessing is allowed, irrespective of whether

phi or tetrachoric correlations are used (Hu lin, Drasgow, & Parsons, 1983). Secondly, in

computing tetrachoric correlations, the cell entries of the fourfold table for a pthr of

dichotomous items frequently become zero thus making it difficult to determine an

appropriate value for the correlation. Thirdly, problems associated with determining the

number of significant factors eAst.
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In this study the statistical package LISCOMP is used to pezform exploratory linear

factor analysis using tetrachoric correlations. Three different approaches are used to

determine the number of significant factors: parallel analysis, the chisquare test of

goodness of fit, and goodness of fit statistics (the means and standard deviations of the

squares of residual correlations and absolute residuals).

According to parallel analysis (Humphreys & Montenelli, 1975) the eigenvalues of

the given correlation matrix are compared with the eigenvalues of the random data. The

random data consists of binary responses generated randomly with the same number of
items and examinees as that of the given data. The largest eigenvalue from the random
data is used as the cutoff point for eigenvalues from the actual data to determine the

number of significant factors. That is, the number of eigenvalues of the actual data greater

than the largest eigenvalue of the random data is taken as the significant number of factors

underlying the given data.

The second method used to determine the number of factors is the chisquue test
of goodness of fit. The third method involves comparison of means and standard deviations

of squares of residuals and absolute values of residuals after fit of an mfactor model with

the corresponding values from the random data. If the residuals are sufficiently §mall, then

one can regard the fit of the model as reasonably satisfactory (McDonald, 1981; Hattie,

1985, Hambleton & R.ovinelli, 1986; and Berger & Knot, 1990).

Nonlinear Factor Analysis

McDonald (1967, 1980, 1982), McDonald and Ahlawat (1974) have demonstrated

that applying linear factor analysis to unidimensional binary data yields "nonlinear

factors" rather than "difficulty factors". McDonald developed the method of nonlinear

factor analysis (NLFA) to account for the nonlinearity of the data as an improvement over

linear factor analysis. In the context of item response theory, nonlinear factor analysis
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seems appropriate because the latent variable is related to the performance in a nonlinear

fashion. The variables in the model can be expressed as polynomial functions of latent

traits or factors. For example, a twofactor model with linear and quadratic terms would
be of the following form:

Y. = b. +b. 0 +b. 02+b. 0 +b. 02+u.e. (i=1,2,...N)1 10 1 112 1 121 2 122 2 1'

where Yi denotes the examinee's score on item i, 0 denotes the lateut trait, bijk denotes the
factor loadings of ith item on jth common factor for kth degree element in the

polynomial, and ui denotes the unique factor loading for item i. Conceptually, NLFA is

very appealing and seems appropriate to assess the dimensionality of binary responses

conforming to normal ogive or logistic item response models. Hambleton and Rovinelli
(1986) have demonstrated the use of NLFA to assess dimensionality and found it to be a

promising method. They, however, caution about the criterion for the adequacy of the fit of
the model.

In the present study NLFA embodied in the computer program NOFA is used. The

fit of the model is studied just as in the case of the linear factor analyses comparing the

means and standard deviations of squared residuals and absolute residuals with the

corresponding values of random data and linear factor analyses. The chisquare statistic
values are not available and hence were not used.

Holland and Rosenbaum's Test of Lack of Fit of a

Unidimensional, Monotone, and Conditional Independent Model

Rosenbaum (1984), and Holland and Rosenbaum (1986) have proved theorems

concerning conditional association that can be applied to assess dimensionality. The basic

notion in Holland and RDsenbaum's (H&R) theorems is that if the items are locally
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independent, unidimensional, and the ICCs are monotone, then the items are conditionally

positively associated. Specifically, the conditional covariances between any pair of item

response functions of a set of uniclimensional dichotomous item responses given any

function of the remaining item responses will be nonnegative. This can be hypothesized as

H0' Coy (X1,. X.1
i

E

iik
Xk) > 0 vs H

1' Cov (Xi, Xii
i

E
jik

Xv) < 0

Conditional associations for each pair of items is tested, given the numberright

score on the remaining items. The MantelHaenszel test (MH) (Mantel & Haenszel, 1954)

is used to test this hypothesis. To perform the MH test on a given pair of items, a 2x2

contingency table is constructed for the pair for each of the possible numberright score on

the remaining items. The MH statistic is given by:

= n11+ E(n1 1+) + 1/2Z

v nn+

where nilk denotes the observed number of examinees with total score of k answering

both items i and j correctly with k = 1,2,...K. E(nii+) and v(n) are the expectation

and variance of n11+ respectively where the plus subscript denotes the summation over k.

The computed Zvalue is referred to the lower tail of the standard normal distribution. A

statistically significant Z implies that the pair of items in question are not conditionally

associated given the sum of the other items, thus inconsistent with the unidimensional

model. In this manner the MH statistic is computed for au N(N-1)/ 2 pairs of items. If a

lug number of pairs are shown not to be conditionally associated, then the unidimensional

assumption is inappropriate.

Since ELIA approach tests each item pair with significance level a, the simultaneous
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inference for all item pairs can be based on Bonferoni bounds (Holland & Rosenbaum, 1986,

Junker, 1990, and Zwick, 1987). According to Bonferoni bounds one would accept H. if the

number of rejections at level a is around na, where n is the number of tests performed;

reject H. if at least one test is rejected at level a/n.

Rosenbaum (1984), Zwick (1987), and BenSimon and Cohen (1990) have

demonstrated the application of H&R approach to assess dimensionality. BenSimon and
Cohen found the H&R approach to be conservative and erroneously misclassified nearly

half of the multidimensional item pools they analyzed as unidimensional. Zwick found

H&R approach to be consistent with other procedures investigated in confirming

unidimensionality of NAEP reading data.

Stout's Procedure

Stout (1987) developed a statistical procedure to test the hypothesis of essential

unidimensionality, the existence of one dominant dimension. The procedure has several

steps. These are briefly described here (for details see Stout, 1987, Nandakumar, 1991). The
hypothesis is stated as

H0' dE=1 vs H
1' dE >1

where dE denotes the essential dimensionality of the item pool in which the given test

responses are assumed to be imbedded. The J examinees are partitioned into two groups.

One group of examinees is used for exploratory factor analysis to select items for subtests,
and the other group of examinees is used to compute Stout's statistic T. The N test items

are split into three subsets AT1, AT2, and PT. The items of subtest AT1 are chosen such

that they all measure the same dominant ability; the items of AT2 are matched in

difficrIty with items of ATI to correct for difficulty and guessing factors in item responses;
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and the rest of the items are used for PT. The subtest PT is used to split examinees into K

subgroups based on their PT score; the subtests AT1 and AT2 are used to compute the

unidimensional statistic T given by:

where

T = (T1T2)/471

2
1

K r °U,k_ 1

JP. I-1=1 L sk

2 2is computed using items of AT1. The crk and cru,k and Sk are given as follows.

The usual variance estimate for subgroup k is given by

where

.k ty(k) c(k))2 ia
k,

y(k) EM
i

u and EJK y(k)/J
i =1 jk ' =1 j Kj '

with 1.1 (1 or 0) denoting the response for item i by examinee j in subgroup k, and Jk

denoting the total number of examinees in subgroup k. The "unidimensionai" variance

estimate for subgroup k is given by

where

2 5.1M
cU,k =1

:(k) A /7
=

I
"i=1

TT

And the standard error of estimate for subgroup k is given by

1 1



where

1/2
Sk = [(p4,k a k) + 4,k/M lale

"
1,Jkj1f

"
v(k)_ v(k))4/jk,

04,k = j

54,k =
E11 plk)(1_pik)) (1_2p1k))2.
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The computed T value is referred to the upper tail of the standard normal

distribution to obtain the significance level. The pvalues of unidimensional tests are
expected to be large while the pvalues of multidimensional tests are expected to be within
the margin of the specified level of significance.

Stout's procedure, as refined by Nandakumar and Stout (1991), is used for assessing

dimensionality in the present study. Stout's procedure has been found to be discriminating

well between unidimensional and two-dimensional tests in a variety of simulated test data
for correlation between abilities as high as .7 (Stout, 1987; Nandakumar & stout, 1991).

Nandakumax (1991) has shown the usefulness of Stout's procedure to assess essential

unidimensionality in the possible presence of several minor abilities. Nandakumar(1989)

applied Stout's procedure on several real test oata sets and found that the procedure

correctly confirmed the unidimensionality of test data that were previously shown to be

unidimensional by others. For twodimensional test data, created by combining the

unidimensional test data, Stout's procedure exhibited good power.

Description of Test Data

The Simulated Test Data

Seven data sets DATA1DATA7 are simulated. Out of the seven, three data sets

1 2
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DATA1DATA3 are strictly unidimensional tests consisting of 25, 40, and 50 items

respectively. The other four data sets DATA4DATA7 are each twodimensional with

length N=25 and correlation between abilities p=.3, N=25 and p=.7, N=50 and p=.3, and

N=50 and p=.7 respectively. All data sets have 2000 examinees. These test data are

described in Table 1. The unidimensional test data are generated according to the

threeparameter logistic model. The abilities are independently generated from the

standard normal distribution and the item parameters (a1,b1,c1) of real tests as described in

Nandakumar (1991) ne used in generating item responses. For example, items of DATA 1

have a larger variability in discrimination power (ad ranging from 1.22 to 2.82; items of

DATA 2 have a smaller variability of ais ranging from 1.07 to 2.00. For each simulated

examinee, the probability of correctly answering each item 131(8) was computed using the

threepaiameter logistic model. For each item i, a random number between 0 and 1 was

generated from a pseudouniform distribution. If the computed probability P(0) is greater
than or equal to the random number generated, the examinee was said to have answered

the item correctly and was given a score of 1; otherwise the ecaminee was given a score of

0. The twodimensional test data were generated according to the multidimensional

compensatory model (Reckase & McKinley, 1983). The abilities e. (8 ,9 ) were generated
1 2

from a bivariate normal distribution with both means zero, and both variances one. The

correlation coefficient between the abilities varied appropriately. The pseudo guessing level

was taken to be .20 for all tests. The discrimination parameters (a11,a12) for each item were

generated as follows:

N ig, N
u 4-2, [2' Pi

where it and a are the mean and standard deviation of the distribution of discrimination

parameters of the respective unidimensional tests with the same number of items. Similarly

13
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1311 and bz were assumed to be independent of each other for each item and were generated

as follows:

b
11

N(ii a)" b N(A"cr)

where and a are the mean and standard deviation of the distribution of difficulty

parameters of the respective unidimensional test with the same number of items. For

example to generate test data DATA4 with N=25 and p=.3, the means and standard

deviations of a.s and b of item parameters used for DATA1 were used. The item responsesis

(0,1) were generated exactly as described for unidimensionai case by using P1(0) of a

twodimensional compensatory model.

The Real Test Data

The real test data used in this study came from two different sources. The National

Assessment of Educational Progress (NAEP, 1988) data for tests US History (HIST) and

Literature (LIT) for grade 11/age 17 were obtained from Educational Testing Services. The

Armed Services Vocational Aptitude Battery (ASVAR) data for Arithmetic Reasoning

(AR) and General Science (GS) for grade 10 were obtained from Linn, Hastings, Hu, and

Ryan (1987). The details about these data sets are described in Table 1. Since all the four

test data sets are considered to be unidimensional, they were combined to form pseudo

twodimensional tests (Zwick, 1987; Nandakurnar, 1989). Four twodimensional tests were
formed as follows. The test data HSTLIT1 was formed by combining the data of 31 items

of HIST with the data of 5 items of LIT randomly selected from 30 items. Since HIST

contains more examinees than LIT, excess examinees in HIST are randomly deleted in

order to make the lengths of the data sets equal. Similarly the data on 10 items from LIT is

combined with the data on 31 items of HIST to form TISTLIT?; and the data on 10 items

1 4
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from GS are combined with the lata OD 30 items of AR to form ARGS. These three are

pseudo twodimensional test data because it is not known if the same examinees took both

tests. Hence the correlation between the abilities is considered to be zero. The last

twodimensional test HSTGEO consisting of 36 items differs from other twodimensional
tests in that the same examinees took both sets of items. HSTGEO contains 31 history

items spanning the US history from colonization period to modern times (HIST) and in

addition contains 5 map items requiring the knowledge of geographical location of different

countries in the world. This is the actual history test according to NAEP. It was shown

using Stout's procedure that the 5 map items formed a separate dimension (Nandakumar,

1989). Hence the data on these 5 map items were removed from the history test to form
HIST with 31 items and the original history is treated as a natural (as opposed to pseudo)

twaclimensional test (HSTGEO).

Results

The results of Stout's procedure and the H&R approach will be studied tngether and

compared because of the similarity in the underlying theory and because both of them are

statistical tests. Likewise the results of linear and nonlinear factor analysis will be studied

and compared together.

The Simulated Test Data

Stout's and Hdell Procecjures

The results of Stout's procedure and the H&R approach for simulated data are
presented at the top of Table 2. For all test data the pvalues associated with Stout's

procedure indicate that Stout's procedure is able to correctly confirm unidimensionality

and detect lack of unidimensionality for both correlation (between abilities) levels p=.3 and

15
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p=.7. For example, all three unidimensional test data DATA1DATA3 have large

pvalues implying the acceptance of the null hypothesis of essential unidimensionality

(here the tests are strictly uniclimensional). For twodimensional data, on the other hand,

the associated pvalues are very small, strongly rejecting the null hypothesis of essential

unidimensionality.

The results of the II&R approach indicate that for unidimensional tests

DATAiDATA3, the number of significant negative partial associations at level a (a=.05)

are far below the expected number (na), strongly confirming the unidimensional nature of

test data. Among the twodimensional tests, DATA4 and DATA6 (for both p=.3) were

correctly assessed as multidimensional. For DATA4 and DATA6 the number of significant

negative partial associations at level a were beyond na level, and the number of significant

negative partial associations beyond level aln were 15 and 1 respectively, making them

multidimensional. The test data DATA5 and DATA7 (for both p=.7), on the other hand,

are assessed as unidimensional. For DATA5 and DATA7 the number of significant negative

partial associations at level a are within no level, and the number of significant negative

partial associations beyond level a/n is zero, hence making them unidimensional tests. It

was disappointing to note that for many of the item pairs measuring different traits, in

twodimensional tests, the covariance did not approach significance. One reason for this

could be the noise in the conditional score. More research is necessary to draw definite

conclusions.

Linear and Nonlinear nctor Analysis

The computer programs used to do the analyses, LISCOMP and NOFA are heavily

computationally intensive and consume enormous CPU time. In addition, LISCOMP

program can not handle more than about 40 variables. For these reasons only a selection of

simulated data sets were included in the linear factor analyses but all test data were

included in the nonlinear factor analyses. The results of linear and nonlinear factor analysis

6
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are presented in Table 3.

Based on parallel analyses, one factor would be retained for DATA1, DATA2, and

DATA5; two factors would be retained for DATA4. Whereas according to the pvalues

associated with a chisquare test of goodness of fit, in Table 3, a twofactor model fits

DATA1, beyond fourfactor model fits DATA2 and DATA4, and a threefactor model fits

DATA5. Similar chisquare values are not available for nonlinear models and hence are not

reported.

The goodness of fit statistics, the means and standard deviations of squared

residuals and absolute residuals, are reported for all test data in Table 3. The top entry in

Table 3 refers to random data (RANDOM) with 25 variables and 2000 examinees. Because

of the cost of computations, only one random data is used to compare the goodness of fit

statistics. Comparison of goodness of fit statistics of RANDOM with DATA1, it appears

that onefactor quadratic model fiis the data better than fourfactor linear model. Hence

nonlinear model accurately confirms the unidimensional nature of items. The onefactor

cubic model is no better than the onefactor quadratic model. Similar observation can be

made for DATA2. Comparison of goodness of fit statistics for linear and nonlinear factor

analysis, it can be seen that for DATA4 and DATA5, twofactor quadratic model fits

better than threefactor linear -nodel, confirming twodimensional nature of data. As

expected, the means and standard deviations of squared residuals and absolute residuals is

much larger for DATA4 (p=.3) than for DATA5 (p=.7), reflecting more

multidimensionality. For DATA5, although twofactor quadratic model fits better than

onefactor quadratic model, the difference in goodness of fit statistics is so small that one

is tempted to accept onefactor quadratic model. Likewise twofactor quadratic model fits

better than onefactor quadratic for DATA6 and onefactor quadratic model fits DATA7.

In summary, the linear factor analysis either underestimates or overestimates the

number of factors and hence is not adequate for assessing dimensionality. The other three

procedures are excellent in confirming unidimensionality. Stout's procedure has

17
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demonstrated greater power in detecting multidimensionality for correlation between

abilities as high as .7. FUER and nonlinear factor analysis methods have demonstrated good

power provided the correlation between abilities is low.

The Real Test Data

Stout's and H&R Procedure

The results of Stout's and H&R for real test data are presented at the bottom of

Table 2. For all test data the pvalues associated with Stout's procedure indicate that

Stout's procedure is able to correctly confirm unidimensionality and detect lack of

unidimensionality in cases where a test data is contaminated by as few as 15% of the data

from a second dominant dimension (for example, HSTLIT1).

For LIT data, the pvalue associated with Stout's procedure is in the border line

tending towards acceptance of H.. The pvalues associated with HIST, AR, and GS are

large leading to acceptance of H.. Relatively small pvalues for LIT and AR suggest that

there is some multidimensionality present in these test data. For all twodimensional tests,
the associated pvalues are very small strongly confirming multidimensional nature of

these data. This is true both for correlated abilities (HSTGEO) and for uncorrelated

abilities (HSTLIT1, HSTLIT2, ARGS). The pvalue for HSTLIT1 is larger than for

HSTLIT2 suggesting greater degree of multidimensionality.

The results of H&R approach is consistent with Stout's procedure in assessing

unidimensionality. Whereas for twodimensional tests, the H&R approach does not seem

to exhibit good power. while test data HST, and AR were clearly confirmed as

unidimensional, for test data LIT the decision is not clear. Although the number of

significant negative partial associations for LIT are less than the maximum allowed

(na=22), one of the MH tests was found to be significant beyond a/n level suggesting

significant presence of multidimensionality in the data. For twodimensional tests

1 8
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HSTLIT1, ARGS, and HSTGEO, the number of significant negative partial associations is

far below the na level suggesting unidimensional nature of these data. For HSTLIT2,

however, the number of significant negative partial associations is well above na level

suggesting presence of multidimensionality but none of the MH tests were significant

beyond level a/n to conform multidimensionality. Hence the decision about dimensionality

is not clear although one is tempted towards multidimensionality.

On closer examination it was found that the MH zvalues for many of the item

pairs where items were supposed to be measuring different traits were negative but not

statistically significant. One explanation for this could be that for these item pairs the

conditional score (EXk), on the basis of which the examinees are classified into different

groups is confounded by noise. This is especially true for HSTLIT2 and ARGS where one

quarter of the test items are of second dominant dimension. Because of the noise in the

conditional score distribution the covariance of item pairs measuring different abilities may

not be exhibiting significant negative covariance. Proper conditional score could

considerably increase the power of the H&R approach.

Linear and Nonlitear Factor Analysis

The results of linear and nonlinear factor analysis for a selection of tests are

reported in Table 4. The results are consistent with the simulated test data in that for all

cases nonlinear factor models fit more accurately than linear factor models. According to

the chisquare test of goodness of fit, beyond fourfactor model fits all test data where

linear factor analysis is performed. Based on goodness of fit statistics, one factor quadratic

model fits the test data LIT, AR., and HSTLIT better than three or fourfactor linear
model. Also onefactor quadratic model fits as well as a twofactor quadratic model. In

the interest of parsimony therefore, onefactor quadratic is the right choice. For HSTLIT2

and ARGS twofactor quadratic fits better than onefactor quadratic, and threefactor
quadratic is no better than twofactor quadratic. But the distinction in the fit statistics

1 9
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between onefactor quadratic and twofactor quadratic is not clear. If chisquare statistics

were available along with the goodness of fit statistics, it would have aided in the

interpretation.

In summary, for real test data, the results are somewhat consistent with simulated

test data. Linear factor analysis over estimates the number of underlying dimensions and is

not adequate for assessing the fit of the model. Whereas the other three methodologies are

excellent in assessing unidimensionality but differed in assessing lack of unidimensionality.

Stout procedure has demonstrated greater power than either the H&R or the nonlinear

factor analysis methods. With the appropriate conditional score the power of H&R

approach could be improved; and with some type of fit statistics the power of nonlinear

factor analysis could be improved.

Discussion

Based on this limited study, findings demonstrate that the linear factor analysis

approach to assess dimensionality is not adequate. This finding is consistent with the

previous research (see for example, Hambleton & Rovinelli (1986), Hattie, 1984). In

contrast to linear factor analysis, Stout's, H&R, and nonlinear factor analysis were each

shown to be promising methodologies to assess dimensionality. The findings should be

interpreted with caution, in that a liniitation of this study was the feature of creation of

two-dimensional real test data (except, HSTGEO). The item responses combined from two

different tests were not administered to the same group of examinees. The results may have

been slightly different had the same examinees taken both sets of items.

In this study all three methodologies exhibited sensitivity to discriminate between

one and twodimensional test data. For known unidimensional test data, both simulated

or real data, all three procedures were able to confirm unidimensionality. For

twodimensional tests, however, the three procedures differed in their ability to detect the
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lack of unidimensionality. Stout's procedure rejected the null hypothesis of essential

unidimensionality for all twodimensional tests, both real and simulated tests. The li&R

approach confirmed the lack of unidimensionality for twodimensional simulated tests

provided the correlation between abilities was low (p=.3). For simulated test data with

high correlation between abilities (p=.7) the H&R approach was unable to detect

multidimensionality. In addition, for all twodimensional real test data, the H&R

approach was unable to detect multidimensionality. The performance of nonlinear factor

analysig methodologx was similar to fl&R procedure for twodimensional tests. For

simulated test data with p=.3, the twefactor model with linear and quadratic terms

demonstrated adequate fit statistics (smaller means and standard deviations of squared

residuals and absolute residuals). For simulated tests with p=.7, however, the distinction

between fit statistics between onefactor and twofactor quadratic models was not evident.

Similarly for twodimensional real test data HSTLIT2 and ARGS, the difference in fit

statistics between onefactor and twofactor models with linear and quadratic terms was

not evident. The difficulty in deciding about the correct model arises because there is no

conciete way of assessing what is meant by gufficiently small for goodness of fit statistics.

In this study the results associated with the H&B. approach were consistent with the

findings of the BenSimon and Cohen's (1990) and Zwick's (1987) studies. The number of

significant negative partial associations for unidimensional tests were far below the

expected five percent level, making it a very conservative test. Consequently it did not
exhibit high power. According to the theorems proved by Holland and Rosenbaum (1986),
the conditional score used to compute the covariances can be itay function of the latent

trait. An appropriate choice of conditional score therefore could maximize the power of
H&R approach.

The results of nonlinear factor analyses were consistent with the findings of

Hambleton and Rovinelli (1986). Factor models with linear and quadratic terms were able

to fit the data better than models with just linear terms. The problem with nonlinear

21



20

factor analysis is the appropriate number of pdymomial terms to retain in the model. This

suggests that some type of adequacy of fit statistics with associated pvalues would be

necessary to aid in assessing the fit of nonlinear models.

In terms of assessing the degree of multidimensionality, both Stout's and nonlinear

factor analysis approaches can be useful. The pvalues associated with Stout's procedure

and the fit statistics associated with nonlinear factor analysis can be helpful in assessing

the degree of multidimensionality. For example, both HIST and AR are unidimensional

tests but the associated pvalues are .937 and .118 respectively. By contrast for a

twodimensional test HSTLIT2, p=.000. The difference in the pvalues mirror the degree

of multidimensionality present in the data. Similarly, the difference in fit statistics between

onefactor and twofactor quadratic models for DATA1 and DATA4 reflect the degree of

multidimensionality.

Just as linear and nonlinear methodologies share the same philosophical theory,

Stout's and H&R approaches share the same theoretical framework. The basic rationale for

the H&R approach is to reject the locally independent, monotone, unidimensional model if

the conditional covariances are significantly negative. By contrast, Stout's procedure

rejects the essentially independent, monotone, essentially unidimensional model if the

conditional covariances are significantly positive (it can be shown that the expected value

of the numerator of Stout's statistic T is mathematically equivalent to average conditional

covariances among AT1 items, Stout (1987)). This apparent contradiction in the criterion

for assessing unidimensionality may be resolved by noting the subtle difference in item pair

covariances under consideration. In the H&R approach one expects the conditional

covariance between items measuring different traits to be negative; whereas in Stout's

approach one expects the asymptotic conditional covariance between items measuring the

same trait to approach zero. Stout's procedure is specifically designed to assess

unidimensionality and hence looks for the existence of at least two dominant dimensions.

By contrast, the Ii&R approach looks at all item pairs and detects items that are not
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measuring the same trait as other items of the test.

As for the computational time involved, Stout's procedure is most efficient. The

computational time involved for other procedures is significantly more. For example, for a

25 item test with 2000 examinees, Stout's procedure uses 4 seconds of CPU time, R&R

approach uses 24 seconds, and nonlinear factor analysis uses 42 seconds; for a 50 items test

with 2000 exazninees, Stout's procedure uses 8 seconds, H&R approach uses 106 seconds,

and nonlinear factor analysis uses 191 seconds. As the test length increases, H&R approach

requires disproportionately more time, and the same is true for nonlinear factor analysis as

test length increases and/or the model gets more complex.
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Table 1
Description of Data Sets

Name J
*

Traits
***

p N

plumber of items of each trait

Traitl Trait2 Mixed
****

Simulated test data

DATA1 2000 I 25 25 0 0

DATA2 2000 1 40 40 0 0

DATA3 2000 1 50 50 0 0

DATA4 2000 2 .3 25 8 8 9

DATA5 2000 2 .7 25 8 8 9

DATA6 2000 2 .3 50 16 16 17

DATA7 2000 2 .7 50 16 16 17

Real test data

LIT 2380 1 30 30 0 0

HIST 2425 1 31 31 0 0
AR 1984 1 30 30 0 0

GS 1990 1 25 25 0 0

HSTLIT1 2380 2 0 36 31 5 0

HSTLIT2 2380 2 0 41 31 10 0

ARGS 1984 2 0 40 30 10 0

HSTGEO 2425 ? ? 36 31 5 0

*
J denotes the number of examinees

*#
p denotes the correlation between traits

***
N denotes the test length

****
mixed items are a combination of both traits 1 and 2



Table 2
Results of Stout and H&R Analyses

stout's Tent__
H.: del

Ha Teat
H.: Cov(Xi dy 2 xk)2o

k#i,j

Name T p<

Decision
based on
Stout's
procedure

No.of
item

pairs

No. of
pairs
significant
at level &

No.of Decision
pairs based on
significant Bonferoni
at level &/n bounds

Simulated test data

DATA1 -1.05 .85 accept H. 300 1 accept H.
DATA2 -0.75 .77 accept 780 3 accept
DATA3 -0.94 .83 accept 1225 10 accept
DATA4 7.19 .000 reject 300 71 15 reject
DATA5 3.62 .000 reject 300 10 0 accept
DATA6 10.13 .000 reject 1225 206 1 reject
DATA7 2.41 .008 reject 1225 56 0 accept

Real test data

LIT 1.70 .045 accept 435 16 1 undecided
HIST -1.53 .937 accept 465 6 accept
AR 1.18 .118 accept 435 3 accept
GS -0.14 .555 accept 300 6 accept
HSTLIT1 2.75 .003 reject 630 18 accept
HSTLIT2 8.9 .000 reject 820 83 undecided
ARGS 8.34 .000 reject 780 37 accept
HSTGEO 6.83 .000 reject 630 16 accept

significant at .05 level

2 8



Table 3
Results of Linear and Nonlinear Factor Analysis

For Simulated Test data: Goodness of Fit Statistics

2
SD(rij2) FrsT SD(IrijI) pc**

't

RANDOM

Linear Factor Analysis
1 Factor
2 Factor
3 Factor
4 Factor

.0009

.0008

.0007

.0006

.0308

.0283

.0246

.0245

.0250

.0225

.0207

.0196

.0182

.0169

.0160

.0147

DATA1

Linear Factor Analysis
1 Factor .0017 .0412 .0333 .0242 .006
2 Factor .0013 .0359 .0286 .0218 .350
3 Factor .0011 .0332 .0262 .0204 .610
4 Factor .0009 .0303 .0236 .0191 .860

Nonlinear Factor Analysis
1 Factor Quadratic .0003 .0185 .0147 .0113

(Y.= b. +b 9+b 02+1, e )
1 i2 i3 i

1 Factor Cubic .0003 .0185 .0147 .0113

(Y.= b. +b. 0+b 92+b 93+b e )
1 10 11 i2 i3 i4 i

DATA2

Linear Factor Analysis
1 Factor .0110 .1049 .0982 .0369 .000
2 Factor .0091 .0954 .0896 .0327 .000
3 Factor .0070 .0834 .0774 .0310 .000
4 Factor .0061 .0779 .0720 .0278 .000

Nonlinear Factor Analysis
1 Factor Quadratic .0003 .0186 .0148 .0113

(Y.= b. +b 9+b 92+b
3
e )

i2 i

1 Factor Cubic .0003 .0185 .0148 .0113

(Y.=
1 10 11 i2 i3 i4 i

DATA3

Nonlinear Factor Analysis
1 Factor Quadratic .0003 .0186 .0147 .0115

(Y.= b. +b 9+b 02+b e )
1 10 i2 i3 i

1 Factor Cubic .0003 .0175 .0138 .0108

(Yi= biebil9+bi292+bi393+bi4ei)



Table 3 continued...

DATA4

Linear Factor Analysis
1 Factor .0203 .1425 .1108 .0900 .000
2 Factor .0017 .0412 .0334 .0240 .000
3 Factor .0012 .0346 .0276 .0212 .008

Nonlinear Factor Analysis
1 Factor Quadratic .0021 .0465 .0523 .0379

(Y.= b. +b. 8+b 02+b e )
1 10 11 12 i3 1

2 Factor Quadratic .0003 .0171 .0131 .0109

(Y.= b. +b. e +b 92+b
1 10 1 112 1 i21

0 +b 02+b e )
2 i22 2 i3 i

DATA5

Linear Factor Analysis
1 Factor .0047 .0686 .0556 .0409 .000
2 Factor .0014 .0374 .0313 .0218 .011
3 Factor .0012 .0346 .0289 .0199 .245
4 Factor .0010 .0316 .0254 .0181 .600

Nonlinear Factor Analysis
1 Factor Quadratic .0009 .03C7 .0246 .0186

(Yi= bio+bilii+bi202+boei)

2 Factor Quadratic .0003 .0174 .0138 .0107

(Yi:
z 1218244)12262°313ei)

DATA6

Nonlinear Factor Analysis
1 Factor Quadratic .0005 .0242 .0204 .0172

(Y.= b. +b 8+b 92+b e )
1 10 i2 i3 i

2 Factor Quadratic .0003 .0182 .0145 .0111

(Y.= b. +b. 0 +b. 92+b 0 +b 02+13 e )1 10 111 1 112 1 i21 2 i22 2 i3 i

DATA?

Nonlinear Factor Analysis
1 Factor Quadratic .0005 .0223 .0176 .0137

(Yi= b1ebi1e+bi292+b3e1)

2 Factor Quadratic .0003 .0175 .0140 .0105

(yi= biebillybi1201+bi2192+1312281+bied

r.. are the residual correlations
1 J

#*
p-value associated with the chi-square test of goodness of fit.



Table 4
Results of Linear and Nonlinear Factor Analysis
For Real Test data: Goodness of Fit Statistics

) ITTIT SD(Irij)) p<**
, 2

SEl(rij

LIT

Linear Factor Analysir
1 Factor .0034 .0584 .0465 .0354 .000
2 Factor .0028 .0526 .0428 .0307 .000
3 Factor .0019 .0439 .0349 .0267 .000
4 Factor .0015 .0391 .0310 .0240 .000

Nonlinear Factor Analysis
1 Factor Quadratic .0008 .0278 .0216 .0176

(Y.= b. +b. 644). 820) e )
1 10 11 12 i3 i
2 Factor Quadratic .0004 .0207 .0162 .0130

(Y.= b. +b 6 +b 82+b 8 +b 82+b e )1 10 ill 1 il2 1 i21 2 i22 2 i3 i

AR

Linear Factor Analysis
1 Factor .0047 .0683 .0569 .0378 .000
2 Factor .0032 .0561 .0468 .0310 .000
3 Factor .0024 .0489 .0400 .0281 .000
4 Factor .0020 .0447 .0362 .0262 .000

Nonlinear Factor Analysis
1 Factor Quadratic .0007 .0265 .0200 .0174

(Yi= biebile+bi282+boei)

2 Factor Quadratic .0004 .0190 .0146 .0122

(Yi= bio+billybilel+bi2102+bi2261+bied

HSTLIT1

Linear Factor Analysis
1 Factor .0053 .0729 .0574 .0450 .000
2 Factor .0043 .0657 .0545 .0368 .000
3 Factor .0033 .0578 .0457 .0354 .000
4 Factor .0022 .0469 .0380 .0279 .000

Nonlinear Factor Analysis
1 Factor Quadratic .0009 .0298 .0213 .0209

(Y.= b. +b 8+b 82+b. e )
1 10 i2 13 i
2 Factor Quadratic .0004 .0204 .0157 .0129

(Y.= b. +b 8 +b. 82+b 0 +b 82+b 0 0 +b e )1 10 ill 1 112 1 i21 2 i22 2 i23 1 2 i3 i

3



Table 4 continued...

HSTLIT2

Nonlinear Factor Analysis
1 Factor Quadratic

(Yi= biebile+bi282+bnei)

2 Factor Quadratic

.0013 .0358 .0228 .0276

.0003 .0182 .0140 .0117

(Yi= biebi11,01+bi1201+bi2102+bi2A+bi230102+bied

ARGS

Nonlinear Factor Analysis
1 Factor Quadratic

(Y.= b. +b. 8+b. 82+b. e.)10 11 12 13 1
2 Factor Quadratic

.0011 .0335 .0239 .0235

.0003 .0184 .0143 .0117

(Yi= biebi1101+bi1201+bi2192+bi2A+bi230102+bied

3 Factor Quadratic .0003 .0175 .0136 .0111

(Y.= b. +b. 8 +b 82+b +b 02+b 0 +1 10 111 1 il2 1 i21 2 i22 2 i31 3

b. 82+b 8 0 +b e e +b 8 e +b e )132 3 i33 1 2 i34 1 3 i35 2 3 i4 i

r1J .. are residual correlations

#*
p-value associated with the chi-square test of goodness of fit.


